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Sequential oxidation of an optically active cycloheptatriene
derivative was achieved under regio- and stereocontrol to result
in perhydroxylation products.

Optically active cycloheptatrienes became available by a
chiral tether-promoted asymmetric Büchner reaction.1 Diazo-
acetate and aromatic groups connected by a 2,4-pentanediol teth-
er react in the presence of a rhodium catalyst under strict stereo-
control to produce optically active cycloheptatrienes 1 having
different substituents; R = alkyl, alkoxy, alkoxycarbonyl, halo-
gen, etc. (Scheme 1). Formation of regioisomers from the sub-
strate having an ortho- or meta-substituent at the aromatic group
can also sufficiently be controlled.1b,2 With a variety of 1 in
hand, this asymmetric synthesis become more valuable if proper
methods for derivation of 1 can be developed.

Reactions so far studied with 1 are cycloaddition with dien-
ophiles,3 hydroboration,4 and thermal5 and acid-catalyzed6 rear-
rangements. Among other possible reactions of 1 aiming at the
selective conversion, dihydroxylation (or its equivalent) of dou-
ble bonds is of particular importance, because a produced vicinal
polyhydroxy structure is often included in natural products and
the hydroxy group produced can be converted into other func-
tional groups with either inversion or retention of stereochemis-
try. In addition to the stereocontrol of each dihydroxylation step,
the regiochemical control is also important to obtain a single iso-
mer and to suppress the overreaction. The sequence consisting of
such well-regulated reactions has an advantage in conversion of
a desired hydroxy group into other functional groups. Consider-
ing general difficulty in controlling the reaction selectivity of
seven-membered ring compounds due to the conformational
multiplicity, we herein studied the dihydroxylation of a simple
unsubstituted substrate 1a to disclose the selectivities to extend
the versatility of 1 as chiral synthons.

Stereochemically pure 1a was prepared by the reported
method (>99% diastereomeric excess, 81% yield in 4 steps).1

To avoid the epimerization due to the high kinetic acidity at
C-11a,7 1a was first reduced to 2 with LiAlH4 (97% yield,

Scheme 2). This process is inevitable so far to keep the stereo-
chemical purity during following reactions. Acid-catalyzed iso-
merization of 2 (p-TsOH.pyridine/THF/rt) proceeded under re-
gio- and stereocontrol to give 3 (70%) as expected from the re-
sults of the analogous reaction.4 When 2 was oxidized with m-
chloroperbenzoic acid (mcpba) in dichloromethane at �78 �C,
the product 4 was again a single isomer (74%).

For determination of the stereochemical properties of the
oxidation, a diastereomeric mixture of 2 at C-7 in a 1 to 1 ratio
was prepared by the reduction of 5.7 The mcpba oxidation of this
mixture gave a diastereomeric mixture of 4 in the same 1 to 1
ratio. Under the GLC conditions for separation of these isomers,
the reaction mixture obtained from pure 2 showed a single peak,
and thus the stereoselectivity was confirmed to be >99%. The
unchanged isomer ratio during the reaction indicates that the ox-
idation of epi-2 must give epi-4 selectively (>90%) stereo-di-
rected by the 2,4-pentanediol part8 irrespective of the stereo-
chemistry at C-7. Proton NOE experiments indicated close vi-
cinity of H-7 and H-2 (or H-4) for both 4 and epi-4, and H-7
and H-12 for epi-4. From these observations, the stereochemistry
of 4 was unambiguously assigned.

The oxidation of 3 at the olefinic part was not successful to
result in a mixture of 3–4 products with two epoxidation-re-
agents; mcpba and tert-butyl hydroperoxide (TBHP) in the pres-
ence of vanadium acetoacetate catalyst.9 Over-oxidation seems
to be a major problem. The oxidation of 4 with mcpba was also
slow and sluggish, but proceeded smoothly with TBHP at 0 �C to
give 6 as a sole product in 87% yield (Scheme 3). Treatment of 2
with two equivalents of TBHP also directly gave 6 (78% yield).
The difference between the two reagents in the oxidation of 4
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Scheme 1. The PD-tethered Büchner reaction.
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Scheme 2. Reagents and conditions. a: LiAlH4 (97% of 2), b:
TsOH.Pyridine (70% of 3), c: mcpba/CH2Cl2/rt (74% of 4),
d: MeOH/K2CO3 (100%).
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can be explained by the conformation of the OH group at C-7;
the acetal ring sterically fences mostly at C-7 side and the OH
fixed at the axial position.10,11 Stereochemistry of the produced
epoxide was determined to be cis to the OH by NOE between
H-7 and H-9.

The oxidation of 6 or its diacetate analogue 7 (73% from 6)
was not successful either by the epoxidations nor osmium dihy-
droxylation to result in complex mixtures. These failures must be
due to the instability of the allylic epoxide structure, and 6
should be converted to a more stable derivative prior to oxida-
tion. When 6 was treated with aqueous NaOH (1mol dm�3) in
THF at room temperature, intramolecular substitution took place
at C-9 to produce 8 (71% from 4 without purification of 6). The
newly formed tricyclic structure was confirmed by HMBC ex-
periment on NMR. The vicinal diol of 8 was protected as aceto-
nide to give 9 (86%).

Reaction of the remaining olefinic bond in 9 was stereocon-
trolled as expected from the bridged structure. When 9 was treat-
ed with osmium tetraoxide and N-methylmorpholine-N-oxide,
10 was produced as an only detectable product after extraction
(>98% pure, 57%). The deoxy-analogue 11 was also possible
to synthesize by the reaction of 9 with thexylborane in THF at
rt followed by the oxidation (NaOH/H2O2). The product was
a regioisomeric mixture in a ratio of 11a:11b = 2.5:1 (isolated
yield of 11a, 62%), but did not contain any other stereoisomers.
The stereochemistries of 10 and 11a were determined by NOE
between H-10 and one acetonide methyl (the other methyl
showed NOE with H-7). A saturated analogue 12 could also
be obtained by the hydrogenation of 9 (95%). Hence, 9 is consid-
ered to be a good synthetic intermediate.

Finally, two reactions of the oxidation products were dem-
onstrated cleaving the bridged structure to give a cyclic ether
and to put it back in a simple ring. When 10 was treated with so-
dium periodate and acetic acid, the diol part was cleaved to give
13 in 90% yield.12 The RuO4 oxidation of 12 with ruthenium
chloride and sodium periodate13 resulted in a selective oxidation
at C-13 to convert the ethereal structure to a lactone (74%).
Succeeding methanolysis afforded 14 in a quantitative yield.

In this communication, sequential polyhydroxylation under
strict regio- and stereocontrol was demonstrated starting with 1a.
Although the reactions presented with 1a are developed as a
model for the reactions with functionalized 1, the products from
1a itself can be synthons for macrolides,14 higher sugars,15 or
more directly for carbaheptoseptanoses.16
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Scheme 3. Reagents and conditions. a: TBHP/VO(acac)3
(87%), b: NaOH/THF-H2O (ca. 90%), c: 2-methoxypropene/
TsOH (86%), d: OsO4/NMO (57% of 10), or ThexBH2, then
H2O2–NaOH (11a:11b = 2.5:1, 62% of 11a), or H2/Pd–C
(95% of 12), e: NaIO4/AcOH (90%), f: RuCl3/NaIO4 (74%)
and K2CO3/MeOH (quant.).
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